Back to Search Start Over

Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction.

Authors :
Boutin, Charlie
Clément, Camille
Rivoal, Jean
Source :
International Journal of Molecular Sciences; Sep2024, Vol. 25 Issue 18, p9845, 47p
Publication Year :
2024

Abstract

Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which are mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of metabolism and signal transduction. In this review, we discuss Cys post-translational modifications (PTMs) and their role in plant metabolism and signal transduction. These modifications include the oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and localization are presented to highlight their importance in the regulation of plant metabolic and signaling pathways. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
18
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
179965762
Full Text :
https://doi.org/10.3390/ijms25189845