Back to Search Start Over

Exploring the unmapped cysteine redox proteoform landscape.

Authors :
Cobley, James N.
Source :
American Journal of Physiology: Cell Physiology; Sep2024, Vol. 327 Issue 3, pC844-C866, 23p
Publication Year :
2024

Abstract

Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03636143
Volume :
327
Issue :
3
Database :
Complementary Index
Journal :
American Journal of Physiology: Cell Physiology
Publication Type :
Academic Journal
Accession number :
179874911
Full Text :
https://doi.org/10.1152/ajpcell.00152.2024