Back to Search Start Over

Proteome profiling, biochemical and histological analysis of diclofenac-induced liver toxicity in Yersinia enterocolitica and Lactobacillus fermentum fed rat model: a comparative analysis.

Authors :
Ahlawat, Shruti
Mohan, Hari
Sharma, Krishna Kant
Source :
Biotechnology Letters; Oct2024, Vol. 46 Issue 5, p807-826, 20p
Publication Year :
2024

Abstract

Diclofenac is a hepatotoxic non-steroidal anti-inflammatory drug (NSAID) that affects liver histology and its protein expression levels. Here, we studied the effect of diclofenac on rat liver when co-administrated with either Yersinia enterocolitica strain 8081 serotype O:8 biovar 1B (D*Y) or Lactobacillus fermentum strain 9338 (D*L). Spectroscopic analysis of stool samples showed biotransformation of diclofenac. When compared with each other, D*Y rats lack peaks at 1709 and 1198 cm<superscript>−1</superscript>, while D*L rats lack peaks at 1411 cm<superscript>−1</superscript>. However, when compared to control, both groups lack peaks at 1379 and 1170 cm<superscript>−1</superscript>. Assessment of serum biomarkers of hepatotoxicity indicated significantly altered activities of AST (D*Y: 185.65 ± 8.575 vs Control: 61.9 ± 2.607, D*L: 247.5 ± 5.717 vs Control: 61.9 ± 2.607), ALT (D*Y: 229.8 ± 6.920 vs Control: 70.7 ± 3.109, D*L: 123.75 ± 6.068 vs Control: 70.7 ± 3.109), and ALP (D*Y: 276.4 ± 18.154 vs Control: 320.6 ± 9.829, D*L: 298.5 ± 12.336 vs Control: 320.6 ± 9.829) in IU/L. The analysis of histological alterations showed hepatic sinusoidal dilation with vein congestion and cell infiltration exclusively in D*Y rats along with other histological changes that are common to both test groups, thereby suggesting more pronounced alterations in D*Y rats. Further, LC–MS/MS based label-free quantitation of proteins from liver tissues revealed 74.75% up-regulated, 25.25% down-regulated in D*Y rats and 51.16% up-regulated, 48.84% down-regulated in D*L experiments. The proteomics-identified proteins majorly belonged to metabolism, apoptosis, stress response and redox homeostasis, and detoxification and antioxidant defence that demonstrated the potential damage of rat liver, more pronounced in D*Y rats. Altogether the results are in favor that the administration of lactobacilli somewhat protected the rat hepatic cells against the diclofenac-induced toxicity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01415492
Volume :
46
Issue :
5
Database :
Complementary Index
Journal :
Biotechnology Letters
Publication Type :
Academic Journal
Accession number :
179772499
Full Text :
https://doi.org/10.1007/s10529-024-03510-2