Back to Search Start Over

Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements.

Authors :
Kuwano, Alexandra
Evan, Amato T.
Walkowiak, Blake
Frouin, Robert
Source :
Atmospheric Chemistry & Physics; 2024, Vol. 24 Issue 17, p9843-9868, 26p
Publication Year :
2024

Abstract

Mineral aerosols (i.e., dust) can affect climate and weather by absorbing and scattering shortwave and longwave radiation in the Earth's atmosphere, the direct radiative effect. Yet understanding of the direct effect is so poor that the sign of the net direct effect at top of the atmosphere (TOA) is unconstrained, and thus it is unknown if dust cools or warms Earth's climate. Here we develop methods to estimate the instantaneous shortwave direct effect via observations of aerosols and radiation made over a 3-year period in a desert region of the southwestern US, obtaining a direct effect of -14±1 and -9±6 W m -2 at the surface and TOA, respectively. We also generate region-specific dust optical properties via a novel dataset of soil mineralogy from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which are then used to model the dust direct radiative effect in the shortwave and longwave. Using this modeling method, we obtain an instantaneous shortwave direct effect of -21±7 and -1±7 W m -2. The discrepancy between the model and observational direct effect is due to stronger absorption in the model, which we interpret as an AVIRIS soil iron oxide content that is too large. Combining the shortwave observational direct effect with a modeled longwave TOA direct effect of 1±1 W m -2 , we obtain an instantaneous TOA net effect of -8±6 W m -2 , implying a cooling effect of dust. These findings provide a useful constraint on the dust direct effect in the southwestern United States. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16807316
Volume :
24
Issue :
17
Database :
Complementary Index
Journal :
Atmospheric Chemistry & Physics
Publication Type :
Academic Journal
Accession number :
179733381
Full Text :
https://doi.org/10.5194/acp-24-9843-2024