Back to Search
Start Over
SeFilter-DIA: Squeeze-and-Excitation Network for Filtering High-Confidence Peptides of Data-Independent Acquisition Proteomics.
- Source :
- Interdisciplinary Sciences: Computational Life Sciences; Sep2024, Vol. 16 Issue 3, p579-592, 14p
- Publication Year :
- 2024
-
Abstract
- Mass spectrometry is crucial in proteomics analysis, particularly using Data Independent Acquisition (DIA) for reliable and reproducible mass spectrometry data acquisition, enabling broad mass-to-charge ratio coverage and high throughput. DIA-NN, a prominent deep learning software in DIA proteome analysis, generates peptide results but may include low-confidence peptides. Conventionally, biologists have to manually screen peptide fragment ion chromatogram peaks (XIC) for identifying high-confidence peptides, a time-consuming and subjective process prone to variability. In this study, we introduce SeFilter-DIA, a deep learning algorithm, aiming at automating the identification of high-confidence peptides. Leveraging compressed excitation neural network and residual network models, SeFilter-DIA extracts XIC features and effectively discerns between high and low-confidence peptides. Evaluation of the benchmark datasets demonstrates SeFilter-DIA achieving 99.6% AUC on the test set and 97% for other performance indicators. Furthermore, SeFilter-DIA is applicable for screening peptides with phosphorylation modifications. These results demonstrate the potential of SeFilter-DIA to replace manual screening, providing an efficient and objective approach for high-confidence peptide identification while mitigating associated limitations. [ABSTRACT FROM AUTHOR]
- Subjects :
- MACHINE learning
PROTEOMICS
PEPTIDES
DAUGHTER ions
MASS spectrometry
DEEP learning
Subjects
Details
- Language :
- English
- ISSN :
- 19132751
- Volume :
- 16
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Interdisciplinary Sciences: Computational Life Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 179711034
- Full Text :
- https://doi.org/10.1007/s12539-024-00611-4