Back to Search Start Over

Population state-driven surrogate-assisted differential evolution for expensive constrained optimization problems with mixed-integer variables.

Authors :
Liu, Jiansheng
Yuan, Bin
Yang, Zan
Qiu, Haobo
Source :
Complex & Intelligent Systems; Oct2024, Vol. 10 Issue 5, p6009-6030, 22p
Publication Year :
2024

Abstract

Many surrogate-assisted evolutionary algorithms (SAEAs) have been shown excellent search performance in solving expensive constrained optimization problems (ECOPs) with continuous variables, but few of them focus on ECOPs with mixed-integer variables (ECOPs-MI). Hence, a population state-driven surrogate-assisted differential evolution algorithm (PSSADE) is proposed for solving ECOPs-MI, in which the adaptive population update mechanism (APUM) and the collaborative framework of global and local surrogate-assisted search (CFGLS) are combined effectively. In CFGLS, a probability-driven mixed-integer mutation (PMIU) is incorporated into the classical global DE/rand/2 and local DE/best/2 for improving the diversity and potentials of candidate solutions, respectively, and the collaborative framework further integrates both the superiority of global and local mutation for the purpose of achieving a good balance between exploration and exploitation. Moreover, the current population is adaptively reselected based on the efficient non-dominated sorting technique in APUM when the population distribution is too dense. Empirical studies on 10 benchmark problems and 2 numerical engineering cases demonstrate that the PSSADE shows a more competitive performance than the existing state-of-the-art algorithms. More importantly, PSSADE provides excellent performance in the design of infrared stealth material film. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21994536
Volume :
10
Issue :
5
Database :
Complementary Index
Journal :
Complex & Intelligent Systems
Publication Type :
Academic Journal
Accession number :
179668405
Full Text :
https://doi.org/10.1007/s40747-024-01478-0