Back to Search Start Over

Side-Scan Sonar Image Augmentation Method Based on CC-WGAN.

Authors :
Zhu, Junhui
Li, Houpu
Qing, Ping
Hou, Jiaxin
Peng, Ye
Source :
Applied Sciences (2076-3417); Sep2024, Vol. 14 Issue 17, p8031, 12p
Publication Year :
2024

Abstract

The utilization of deep learning algorithms for side-scan sonar target detection is impeded by the restricted quantity and representativeness of side-scan sonar (SSS) samples. To address this issue, this paper proposes a method for image augmentation using a CC-WGAN network. First, the generator incorporates the Convolutional Block Attention Module (CBAM) to enhance the assimilation of global information and local features in the input images. This integration also improves stability and avoids mode collapse problems associated with the original Generative Adversarial Network. Subsequently, the CBAM is incorporated into the discriminator to facilitate a better understanding of the relevance and significance of input data, thereby enhancing the model's generalization ability. Finally, based on this model, existing few-sample SSS images are augmented, and we utilize the augmented images for discrimination and detection with YOLOv5. The experimental results show that following training with the SSS dataset that is augmented by this network, the accuracy of target detection increased by 7.6%, validating the feasibility of our proposed method. This method presents a novel solution to the problem of low model accuracy in underwater target detection with side-scan sonar due to limited samples. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
17
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
179650554
Full Text :
https://doi.org/10.3390/app14178031