Back to Search Start Over

Trajectory Tracking via Interconnection and Damping Assignment Passivity-Based Control for a Permanent Magnet Synchronous Motor.

Authors :
Martinez-Padron, Daniel Sting
de la Rosa-Mendoza, San Jose
Alvarez-Salas, Ricardo
Espinosa-Perez, Gerardo
Gonzalez-Garcia, Mario Arturo
Source :
Applied Sciences (2076-3417); Sep2024, Vol. 14 Issue 17, p7977, 17p
Publication Year :
2024

Abstract

This paper presents a controller design to track speed, position, and torque trajectories for a permanent magnet synchronous motor (PMSM). This scheme is based on the interconnection and damping assignment passivity-based control (IDA-PBC) technique recently proposed to solve the tracking control problem for mechanical underactuated systems. The proposed approach regulates the dynamics of the tracking system error at the origin, assuming the realizable trajectories preserve the motor's port-controlled Hamiltonian structure. The importance of the contribution is two-fold: First, from the theoretical perspective, the trajectory tracking control problem is solved with proved stability properties, a topic that has not been deeply studied with the IDA-PBC methodology design. Second, from the practical point of view, the proposed control scheme exhibits a simple structure for practical implementation and strong robustness properties with respect to parametric uncertainties. The contribution is evaluated under both numerical and experimental environments considering a speed profile that demands the achievement of high dynamic performances. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
17
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
179650500
Full Text :
https://doi.org/10.3390/app14177977