Back to Search Start Over

Multi-Body Dynamics Modeling and Simulation of Maglev Satellites.

Authors :
Li, Zongyu
Wang, Weijie
Wang, Lifen
Source :
Applied Sciences (2076-3417); Sep2024, Vol. 14 Issue 17, p7588, 17p
Publication Year :
2024

Abstract

The Lorentz force magnetic levitation gim2bal stabilized platform (LFMP), as a new generation of high-precision turntable for maglev satellites, can meet the requirements of future spacecraft for ultra-high attitude pointing accuracy and stability. To solve the problem of three-module multi-body attitude control under maneuvering conditions, the platform subsystem is first dynamically modeled based on the second type of Lagrangian equation, and the payload subsystem is dynamically modeled based on the Newton–Euler method. Secondly, a multi-loop control system is designed, consisting of high-precision and fast attitude pointing control for the payload, position tracking control for the platform subsystem, and tracking control for the maglev module. The final simulation results verified the feasibility and effectiveness of the payload-centered control method. An evaluation of the stability with a specific model has been performed, and the attitude accuracy of the payload is within 0.00002° and the attitude stability is within 0.00005°/s. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
17
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
179650111
Full Text :
https://doi.org/10.3390/app14177588