Back to Search
Start Over
Optimization Study of Outdoor Activity Space Wind Environment in Residential Areas Based on Spatial Syntax and Computational Fluid Dynamics Simulation.
- Source :
- Sustainability (2071-1050); Sep2024, Vol. 16 Issue 17, p7322, 22p
- Publication Year :
- 2024
-
Abstract
- In the context of increasing global energy shortages and climate change, the human living environment, as a crucial component of residents' daily lives, has garnered growing attention from the academic community. Research on residential environments is vital for promoting the sustainable development of urban construction and constitutes an important aspect of sustainable development studies. This study focuses on the optimization strategy for the outdoor activity space wind environment in the Xihuayuan residential area in Lanzhou city, utilizing spatial syntax analysis and Computational Fluid Dynamics (CFD) simulation technology. Firstly, the outdoor activity space is analyzed for visibility and spatial accessibility using DepthmapX0.6 software. Then, the outdoor wind environment in the residential area is simulated using PHOENICS 2018 software, and the analysis is conducted on outdoor spaces with a poor wind environment in terms of high accessibility. The results indicate that residents' outdoor comfort in these spaces is poor, highlighting the urgent need for improvement in the wind environment. This research attempts to optimize the wind environment in high-accessibility spaces within the residential area by improving building layout, orientation, and height. The simulation results after optimization demonstrate an increase in the overall average wind speed to 1.44 m/s, with the proportion of spaces with a good wind environment in high-accessibility areas during summer rising from 33.4% to 59.2%. The optimization strategy effectively improves the wind environment in high-accessibility areas of the residential area. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20711050
- Volume :
- 16
- Issue :
- 17
- Database :
- Complementary Index
- Journal :
- Sustainability (2071-1050)
- Publication Type :
- Academic Journal
- Accession number :
- 179648916
- Full Text :
- https://doi.org/10.3390/su16177322