Back to Search
Start Over
Inverse Identification of Constitutive Model for GH4198 Based on Genetic–Particle Swarm Algorithm.
- Source :
- Materials (1996-1944); Sep2024, Vol. 17 Issue 17, p4274, 19p
- Publication Year :
- 2024
-
Abstract
- A precise Johnson-Cook (J–C) constitutive model is the foundation for precise calculation of finite-element simulation. In order to obtain the J–C constitutive model accurately for a new cast and forged alloy GH4198, an inverse identification of J–C constitutive model was proposed based on a genetic–particle swarm algorithm. Firstly, a quasi-static tensile test at different strain rates was conducted to determine the initial yield strength A, strain hardening coefficient B, and work hardening exponent n for the material's J–C model. Secondly, a new method for orthogonal cutting model was constructed based on the unequal division shear theory and considering the influence of tool edge radius. In order to obtain the strain-rate strengthening coefficient C and thermal softening coefficient m, an orthogonal cutting experiment was conducted. Finally, in order to validate the precision of the constitutive model, an orthogonal cutting thermo-mechanical coupling simulation model was established. Meanwhile, the sensitivity of J–C constitutive model parameters on simulation results was analyzed. The results indicate that the parameter m significantly affects chip morphology, and that the parameter C has a notable impact on the cutting force. This study addressed the issue of missing constitutive parameters for GH4198 and provided a theoretical reference for the optimization and identification of constitutive models for other aerospace materials. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 17
- Issue :
- 17
- Database :
- Complementary Index
- Journal :
- Materials (1996-1944)
- Publication Type :
- Academic Journal
- Accession number :
- 179648671
- Full Text :
- https://doi.org/10.3390/ma17174274