Back to Search Start Over

Engineering Moderately Lithiophilic Paper-Based Current Collectors with Variable Solid Electrolyte Interface Films for Anode-Free Lithium Batteries.

Authors :
Yang, Baohong
Wei, Hairu
Wang, Huan
Wu, Haoteng
Guo, Yanbo
Ren, Xuan
Xiong, Chuanyin
Liu, Hanbin
Wu, Haiwei
Source :
Nanomaterials (2079-4991); Sep2024, Vol. 14 Issue 17, p1461, 13p
Publication Year :
2024

Abstract

Compared to traditional lithium metal batteries, anode-free lithium metal batteries use bare current collectors as an anode instead of Li metal, making them highly promising for mass production and achieving high-energy density. The current collector, as the sole component of the anode, is crucial in lithium deposition-stripping behavior and greatly impacts the rate of Li depletion from the cathode. In this study, to investigate the lithiophilicity effect of the current collector on the solid electrolyte interface (SEI) film construction and cycling performance of anode-free lithium batteries, various lightweight paper-based current collectors were prepared by electroless plating Cu and lipophilic Ag on low-dust paper (LDP). The areal densities of the as-prepared LDP@Cu, LDP@Cu-Ag, and LDP@Ag were approximately 0.33 mg cm<superscript>−2</superscript>. The use of lipophilic Ag-coated collectors with varying loadings allowed for the regulation of lipophilicity. The impacts of these collectors on the distribution of SEI components and Li depletion rate in common electrolytes were investigated. The findings suggest that higher loadings of lipophilic materials, such as Ag, on the current collector increase its lipophilicity but also lead to significant Li depletion during the cycling process in full-cell anode-free Li metal batteries. Thus, moderately lithiophilic current collectors, such as LDP@Cu-Ag, show more potential for Li deposition and striping and stable SEI with a low speed of Li depletion. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
14
Issue :
17
Database :
Complementary Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
179645492
Full Text :
https://doi.org/10.3390/nano14171461