Back to Search Start Over

The effects of dynamic learning and the forgetting process on an optimising modelling for full-service repair pricing contracts for medical devices.

Authors :
Jiang, Aiping
Li, Lin
Xu, Xuemin
Huang, David Y. C.
Source :
Journal of the Operational Research Society; Oct2024, Vol. 75 Issue 10, p1910-1924, 15p
Publication Year :
2024

Abstract

In order to improve the profitability and customer service management of original equipment manufacturers (OEMs) in a market where full-service (FS) and on-call service (OS) co-exist, this article extends the optimising modelling for pricing FS repair contracts with the effects of dynamic learning and forgetting. Along with considering autonomous learning in maintenance practice, this study also analyses how induced learning and forgetting process in a workplace put impact on the pricing optimising model of FS contracts in the portfolio of FS and OS. A numerical analysis based on real data from a medical industry proves that the enhanced FS pricing model discussed here has two main advantages: (1) It could prominently improve repair efficiency, and (2) It help OEMs gain better profits compared to the original FS model and the sole OS maintenance. Sensitivity analysis shows that if internal failure rate increases, the optimised FS price rises gradually until reaching the maximum value, and profitability to the OEM increases overall; if frequency of induced learning goes up, the optimal FS price rises after a short-term downward trend, with a stable profitability to the OEM. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01605682
Volume :
75
Issue :
10
Database :
Complementary Index
Journal :
Journal of the Operational Research Society
Publication Type :
Academic Journal
Accession number :
179638298
Full Text :
https://doi.org/10.1080/01605682.2023.2285813