Back to Search Start Over

Deep learning model for elevating internet of things intrusion detection.

Authors :
Dash, Nitu
Chakravarty, Sujata
Rath, Amiya Kumar
Source :
International Journal of Electrical & Computer Engineering (2088-8708); 2024, Vol. 14 Issue 5, p5874-5883, 10p
Publication Year :
2024

Abstract

The internet of things (IoT) greatly impacts daily life by enabling efficient data exchange between objects and servers. However, cyber-attacks pose a serious threat to IoT devices. Intrusion detection systems (IDS) are vital for safeguarding networks, and machine learning methods are increasingly used to enhance security. Continuous improvement in accuracy and performance is crucial for effective IoT security. Deep learning not only outshines traditional machine learning methods but also holds untapped potential in fortifying IDS systems. This paper introduces an innovative deep learning framework tailored for anomaly detection within IoT networks, leveraging bidirectional long short-term memory (BiLSTM) and gated recurrent unit (GRU) architectures. The hyper parameters of the proposed model are optimized using the JAYA optimization technique. These models are validated using IoT-23 and MQTTset datasets. Several performance metrics including accuracy, precision, recall, F-score, true negative rate (TNR), false positive rate (FPR), and false negative rate (FNR), have been selected to assess the effectiveness of the suggested model. The empirical results are scrutinized and juxtaposed with prevailing approaches in the realm of intrusion detection for IoT. Notably, the proposed method emerges as showcasing superior accuracy when contrasted with existing methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20888708
Volume :
14
Issue :
5
Database :
Complementary Index
Journal :
International Journal of Electrical & Computer Engineering (2088-8708)
Publication Type :
Academic Journal
Accession number :
179593910
Full Text :
https://doi.org/10.11591/ijece.v14i5.pp5874-5883