Back to Search
Start Over
Enhancing oil palm segmentation model with GAN-based augmentation.
- Source :
- Journal of Big Data; 9/8/2024, Vol. 11 Issue 1, p1-15, 15p
- Publication Year :
- 2024
-
Abstract
- In digital agriculture, accurate crop detection is fundamental to developing automated systems for efficient plantation management. For oil palm, the main challenge lies in developing robust models that perform well in different environmental conditions. This study addresses the feasibility of using GAN augmentation methods to improve palm detection models. For this purpose, drone images of young palms (< 5 year-old) from eight different estates were collected, annotated, and used to build a baseline detection model based on DETR. StyleGAN2 was trained on the extracted palms and then used to generate a series of synthetic palms, which were then inserted into tiles representing different environments. CycleGAN networks were trained for bidirectional translation between synthetic and real tiles, subsequently utilized to augment the authenticity of synthetic tiles. Both synthetic and real tiles were used to train the GAN-based detection model. The baseline model achieved precision and recall values of 95.8% and 97.2%. The GAN-based model achieved comparable result, with precision and recall values of 98.5% and 98.6%. In the challenge dataset 1 consisting older palms (> 5 year-old), both models also achieved similar accuracies, with baseline model achieving precision and recall of 93.1% and 99.4%, and GAN-based model achieving 95.7% and 99.4%. As for the challenge dataset 2 consisting of storm affected palms, the baseline model achieved precision of 100% but recall was only 13%. The GAN-based model achieved a significantly better result, with a precision and recall values of 98.7% and 95.3%. This result demonstrates that images generated by GANs have the potential to enhance the accuracies of palm detection models. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 21961115
- Volume :
- 11
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Journal of Big Data
- Publication Type :
- Academic Journal
- Accession number :
- 179536702
- Full Text :
- https://doi.org/10.1186/s40537-024-00990-x