Back to Search Start Over

OP02.09: AIRFRAME: artificial intelligence for recognition of fetal brain anomalies from ultrasound images of the first trimester.

Authors :
Familiari, A.
Di Ilio, C.
Fanelli, T.
Volpe, P.
Dall'Asta, A.
Volpe, N.
Zegarra, R. Ramirez
Minopoli, M.
Thilaganathan, B.
Prefumo, F.
Quarello, E.
Raffaelli, R.
Binder, J.
Grisolia, G.
Rizzo, G.
Meagher, S.
Tran, H.
Boldrini, L.
Ghi, T.
Source :
Ultrasound in Obstetrics & Gynecology; Sep2024 Supplement 1, Vol. 64, p64-65, 2p
Publication Year :
2024

Abstract

This article discusses a study that aims to develop an artificial intelligence (AI) algorithm for the automatic classification of ultrasound images of the fetal brain in the first trimester. The algorithm focuses on identifying abnormal sonographic findings of the posterior cranial fossa (PCF), which can be early markers of open spina bifida or Dandy Walker malformation. The study used a dataset of 251 images and achieved promising results, demonstrating the potential for the AI algorithm to support clinicians in detecting major central nervous system anomalies during early pregnancy. The next phase of the study will assess the algorithm's clinical applicability in routine practice. [Extracted from the article]

Details

Language :
English
ISSN :
09607692
Volume :
64
Database :
Complementary Index
Journal :
Ultrasound in Obstetrics & Gynecology
Publication Type :
Academic Journal
Accession number :
179532112
Full Text :
https://doi.org/10.1002/uog.27891