Back to Search
Start Over
Assessment of the efficacy of field and laboratory methods for the detection of Tropilaelaps spp.
- Source :
- PLoS ONE; 9/6/2024, Vol. 19 Issue 9, p1-14, 14p
- Publication Year :
- 2024
-
Abstract
- Tropilaelaps spp. are invasive mites that cause severe disease in Apis mellifera colonies. The UK has deployed an elaborate surveillance system that seeks to detect these mites early in any invasion to allow the best opportunity to eradicate any incursion. Effective field and laboratory protocols, capable of reliably detecting low numbers of mites, are key to the success of any intervention. Here we compared the efficacy of established field monitoring using brood removal with an uncapping fork, and brood 'bump' methods with novel methods for Tropilaelaps detection modified from Varroa monitoring schemes. In addition, we monitored the efficacy of the laboratory method for screening for mites in hive debris by floating mites in ethanol. Our results clearly indicated that novel methods such as uncapping infested brood with tweezers, catching mite drop using sticky traps and rolling adult bees in icing sugar were all significantly more likely to detect Tropilaelaps than existing methods such as using an uncapping fork on infested brood, or the brood 'bump' method. Existing laboratory protocols that sieved hive debris and then floated the mite containing layer failed to detect Tropilaelaps mites and new efficacious protocols were developed. Our results demonstrated that the national surveillance protocols for Tropilaelaps mite detection required modification to improve the early detection of this damaging invasive mite. [ABSTRACT FROM AUTHOR]
- Subjects :
- BEE colonies
MITES
RAIDS (Military science)
VARROA
ANIMAL clutches
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 19
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- 179514132
- Full Text :
- https://doi.org/10.1371/journal.pone.0301880