Back to Search
Start Over
CFDA-CSF: A Multi-Modal Domain Adaptation Method for Cross-Subject Emotion Recognition.
- Source :
- IEEE Transactions on Affective Computing; Jul-Sep2024, Vol. 15 Issue 3, p1502-1513, 12p
- Publication Year :
- 2024
-
Abstract
- Multi-modal classifiers for emotion recognition have become prominent, as the emotional states of subjects can be more comprehensively inferred from Electroencephalogram (EEG) signals and eye movements. However, existing classifiers experience a decrease in performance due to the distribution shift when applied to new users. Unsupervised domain adaptation (UDA) emerges as a solution to address the distribution shift between subjects by learning a shared latent feature space. Nevertheless, most UDA approaches focus on a single modality, while existing multi-modal approaches do not consider that fine-grained structures should also be explicitly aligned and the learned feature space must be discriminative. In this paper, we propose Coarse and Fine-grained Distribution Alignment with Correlated and Separable Features (CFDA-CSF), which performs a coarse alignment over the global feature space, and a fine-grained alignment between modalities from each domain distribution. At the same time, the model learns intra-domain correlated features, while a separable feature space is encouraged on new subjects. We conduct an extensive experimental study across the available sessions on three public datasets for multi-modal emotion recognition: SEED, SEED-IV, and SEED-V. Our proposal effectively improves the recognition performance in every session, achieving an average accuracy of 93.05%, 85.87% and 91.20% for SEED; 85.72%, 89.60%, and 86.88% for SEED-IV; and 88.49%, 91.37% and 91.57% for SEED-V. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19493045
- Volume :
- 15
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Affective Computing
- Publication Type :
- Academic Journal
- Accession number :
- 179509547
- Full Text :
- https://doi.org/10.1109/TAFFC.2024.3357656