Back to Search Start Over

Deepdive: Leveraging Pre-trained Deep Learning for Deep-Sea ROV Biota Identification in the Great Barrier Reef.

Authors :
Deo, Ratneel
John, Cédric M.
Zhang, Chen
Whitton, Kate
Salles, Tristan
Webster, Jody M.
Chandra, Rohitash
Source :
Scientific Data; 9/3/2024, Vol. 11 Issue 1, p1-12, 12p
Publication Year :
2024

Abstract

Understanding and preserving the deep sea ecosystems is paramount for marine conservation efforts. Automated object (deep-sea biota) classification can enable the creation of detailed habitat maps that not only aid in biodiversity assessments but also provide essential data to evaluate ecosystem health and resilience. Having a significant source of labelled data helps prevent overfitting and enables training deep learning models with numerous parameters. In this paper, we contribute to the establishment of a significant deep-sea remotely operated vehicle (ROV) image classification dataset with 3994 images featuring deep-sea biota belonging to 33 classes. We manually label the images through rigorous quality control with human-in-the-loop image labelling. Leveraging data from ROV equipped with advanced imaging systems, our study provides results using novel deep-learning models for image classification. We use deep learning models including ResNet, DenseNet, Inception, and Inception-ResNet to benchmark the dataset that features class imbalance with many classes. Our results show that the Inception-ResNet model provides a mean classification accuracy of 65%, with AUC scores exceeding 0.8 for each class. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20524463
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Scientific Data
Publication Type :
Academic Journal
Accession number :
179414160
Full Text :
https://doi.org/10.1038/s41597-024-03766-3