Back to Search Start Over

Customizable Hydrogel Coating of ECM-Based Microtissues for Improved Cell Retention and Tissue Integrity.

Authors :
Elgin, Shani
Silberman, Eric
Shapira, Assaf
Dvir, Tal
Source :
Gels (2310-2861); Aug2024, Vol. 10 Issue 8, p515, 13p
Publication Year :
2024

Abstract

Overcoming the oxygen diffusion limit of approximately 200 µm remains one of the most significant and intractable challenges to be overcome in tissue engineering. The fabrication of hydrogel microtissues and their assembly into larger structures may provide a solution, though these constructs are not without their own drawbacks; namely, these hydrogels are rapidly degraded in vivo, and cells delivered via microtissues are quickly expelled from the area of action. Here, we report the development of an easily customized protocol for creating a protective, biocompatible hydrogel barrier around microtissues. We show that calcium carbonate nanoparticles embedded within an ECM-based microtissue diffuse outwards and, when then exposed to a solution of alginate, can be used to generate a coated layer around the tissue. We further show that this technique can be fine-tuned by adjusting numerous parameters, granting us full control over the thickness of the hydrogel coating layer. The microtissues' protective hydrogel functioned as hypothesized in both in vitro and in vivo testing by preventing the cells inside the tissue from escaping and protecting the microdroplets against external degradation. This technology may provide microtissues with customized properties for use as sources of regenerative therapies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23102861
Volume :
10
Issue :
8
Database :
Complementary Index
Journal :
Gels (2310-2861)
Publication Type :
Academic Journal
Accession number :
179379181
Full Text :
https://doi.org/10.3390/gels10080515