Back to Search Start Over

CrysFormer: Protein structure determination via Patterson maps, deep learning, and partial structure attention.

Authors :
Pan, Tom
Dun, Chen
Jin, Shikai
Miller, Mitchell D.
Kyrillidis, Anastasios
Phillips Jr., George N.
Source :
Structural Dynamics; Jul2024, Vol. 11 Issue 4, p1-14, 14p
Publication Year :
2024

Abstract

Determining the atomic-level structure of a protein has been a decades-long challenge. However, recent advances in transformers and related neural network architectures have enabled researchers to significantly improve solutions to this problem. These methods use large datasets of sequence information and corresponding known protein template structures, if available. Yet, such methods only focus on sequence information. Other available prior knowledge could also be utilized, such as constructs derived from x-ray crystallography experiments and the known structures of the most common conformations of amino acid residues, which we refer to as partial structures. To the best of our knowledge, we propose the first transformer-based model that directly utilizes experimental protein crystallographic data and partial structure information to calculate electron density maps of proteins. In particular, we use Patterson maps, which can be directly obtained from x-ray crystallography experimental data, thus bypassing the well-known crystallographic phase problem. We demonstrate that our method, CrysFormer, achieves precise predictions on two synthetic datasets of peptide fragments in crystalline forms, one with two residues per unit cell and the other with fifteen. These predictions can then be used to generate accurate atomic models using established crystallographic refinement programs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23297778
Volume :
11
Issue :
4
Database :
Complementary Index
Journal :
Structural Dynamics
Publication Type :
Academic Journal
Accession number :
179373767
Full Text :
https://doi.org/10.1063/4.0000252