Back to Search
Start Over
Utilizing Deep Learning and Spatial Analysis for Accurate Forest Fire Occurrence Forecasting in the Central Region of China.
- Source :
- Forests (19994907); Aug2024, Vol. 15 Issue 8, p1380, 23p
- Publication Year :
- 2024
-
Abstract
- Forest fires in central China pose significant threats to ecosystem health, public safety, and economic stability. This study employs advanced Geographic Information System (GIS) technology and Convolutional Neural Network (CNN) models to comprehensively analyze the factors driving the occurrence of these fire events. A predictive model for forest fire occurrences has been developed, complemented by targeted zoning management strategies. The key findings are as follows: (i) Spatial analysis reveals substantial clustering and spatial autocorrelation of fire points, indicating high-density areas of forest fire occurrence, primarily in Hunan and Jiangxi provinces, as well as the northeastern region. This underscores the need for tailored fire prevention and management approaches. (ii) The forest fire prediction model for the central region demonstrates exceptional accuracy, reliability, and predictive power. It achieves outstanding performance metrics in both training and validation sets, with an accuracy of 86.00%, precision of 88.00%, recall of 87.00%, F1 score of 87.50%, and an AUC value of 90.50%. (iii) Throughout the year, the occurrence of forest fires in central China varies by location and season. Low-occurrence periods are observed in summer and winter, particularly in Hunan and Hubei provinces, due to moderate weather conditions, agricultural practices, and reduced outdoor activities. However, spring and autumn also present localized risks due to uneven rainfall and dry climates. This study provides valuable insights into the dynamics of forest fire occurrences in central China, offering a solid framework for proactive fire management and policy formulation to effectively mitigate the impacts of these events. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19994907
- Volume :
- 15
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Forests (19994907)
- Publication Type :
- Academic Journal
- Accession number :
- 179354689
- Full Text :
- https://doi.org/10.3390/f15081380