Back to Search
Start Over
Bidirectional Long Short-Term Memory Development for Aircraft Trajectory Prediction Applications to the UAS-S4 Ehécatl.
- Source :
- Aerospace (MDPI Publishing); Aug2024, Vol. 11 Issue 8, p625, 17p
- Publication Year :
- 2024
-
Abstract
- The rapid advancement of unmanned aerial systems in various civilian roles necessitates improved safety measures during their operation. A key aspect of enhancing safety is effective collision avoidance, which is based on conflict detection and is greatly aided by accurate trajectory prediction. This paper represents a novel data-driven trajectory prediction methodology based on applying the Long Short-Term Memory (LSTM) prediction algorithm to the UAS-S4 Ehécatl. An LSTM model was designed as the baseline and then developed into a Staked LSTM to better capture complex and hierarchical temporal trajectory patterns. Next, the Bidirectional LSTM was developed for a better understanding of the contextual trajectories from both its past and future data points, and to provide a more comprehensive temporal perspective that could enhance its accuracy. LSTM-based models were evaluated in terms of mean absolute percentage errors. The results reveal the superiority of the Bidirectional LSTM, as it could predict UAS-S4 trajectories more accurately than the Stacked LSTM. Moreover, the developed Bidirectional LSTM was compared with other state-of-the-art deep neural networks aimed at aircraft trajectory prediction. Promising results confirmed that Bidirectional LSTM exhibits the most stable MAPE across all prediction horizons. [ABSTRACT FROM AUTHOR]
- Subjects :
- ARTIFICIAL neural networks
SAFETY
FORECASTING
Subjects
Details
- Language :
- English
- ISSN :
- 22264310
- Volume :
- 11
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Aerospace (MDPI Publishing)
- Publication Type :
- Academic Journal
- Accession number :
- 179352946
- Full Text :
- https://doi.org/10.3390/aerospace11080625