Back to Search Start Over

Surveillance Unmanned Ground Vehicle Path Planning with Path Smoothing and Vehicle Breakdown Recovery.

Authors :
Parsons, Tyler
Baghyari, Farhad
Seo, Jaho
Kim, Byeongjin
Kim, Mingeuk
Lee, Hanmin
Source :
Applied Sciences (2076-3417); Aug2024, Vol. 14 Issue 16, p7266, 21p
Publication Year :
2024

Abstract

As unmanned ground vehicles (UGV) continue to be adapted to new applications, an emerging area lacks proper guidance for global route optimization methodology. This area is surveillance. In autonomous surveillance applications, a UGV is equipped with a sensor that receives data within a specific range from the vehicle while it traverses the environment. In this paper, the ant colony optimization (ACO) algorithm was adapted to the UGV surveillance problem to solve for optimal paths within sub-areas. To do so, the problem was modeled as the covering salesman problem (CSP). This is one of the first applications using ACO to solve the CSP. Then, a genetic algorithm (GA) was used to schedule a fleet of UGVs to scan several sub-areas such that the total distance is minimized. Initially, these paths are infeasible because of the sharp turning angles. Thus, they are improved using two methods of path refinement (namely, the corner-cutting and Reeds–Shepp methods) such that the kinematic constraints of the vehicles are met. Several test case scenarios were developed for Goheung, South Korea, to validate the proposed methodology. The promising results presented in this article highlight the effectiveness of the proposed methodology for UGV surveillance applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
16
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
179351294
Full Text :
https://doi.org/10.3390/app14167266