Back to Search
Start Over
Impact of Density Variations and Growth Direction in 3D-Printed Titanium Alloys on Surface Topography and Bonding Performance with Dental Resins.
- Source :
- Crystals (2073-4352); Aug2024, Vol. 14 Issue 8, p712, 13p
- Publication Year :
- 2024
-
Abstract
- Titanium-based dental prostheses are essential for prosthodontics and can now be 3D printed using powder bed fusion (PBF) technology with different densities by controlling the process parameters. This study aimed to assess the surface topography and bonding strength of dental resins made of 3D-printed titanium alloys with varying densities and growth directions. Three groups of titanium alloy (Ti6Al4V) specimens differentiated by density (low, medium, and high) were produced using laser-melting 3D printing technology (N = 8). Each group included specimen surfaces with vertical and horizontal growths. Vickers microhardness, surface profilometry, wettability, and shear bond strength (SBS) of the titanium samples were measured for all groups. Scanning electron microscopy (SEM) was performed. Statistical analyses were conducted using a two-way ANOVA and Fisher's multiple test. Higher-density specimens exhibited greater microhardness (p < 0.05), and those with horizontal growth directions were harder (p < 0.05) than their vertical counterparts within the same density category. Additionally, low-density specimens in both growth directions had the highest surface roughness values (p < 0.05) compared to the other groups. The wettability values were similar (p > 0.05) among the groups in the vertical direction, but not in the horizontal direction (p < 0.05). However, the density type did not significantly (p > 0.05) influence the bonding strength of 3D-printed titanium. This study revealed significant variations in surface roughness, contact angle, and microhardness based on density and growth direction. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20734352
- Volume :
- 14
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Crystals (2073-4352)
- Publication Type :
- Academic Journal
- Accession number :
- 179350150
- Full Text :
- https://doi.org/10.3390/cryst14080712