Back to Search Start Over

Innovative Paper Coatings: Regenerative Superhydrophobicity through Self-Structuring Aqueous Wax-Polymer Dispersions.

Authors :
Cordt, Cynthia
Daeg, Jennifer
Elle, Oliver
Geissler, Andreas
Biesalski, Markus
Source :
Coatings (2079-6412); Aug2024, Vol. 14 Issue 8, p1028, 25p
Publication Year :
2024

Abstract

For a wide range of applications, paper materials require effective protection against the destructive effect of water, which is most effectively realized by superhydrophobic coatings. In recent years, a considerable amount of scientific research has been carried out in this area, focusing particularly on biogenic resources. With this contribution, we go one step further and examine how biogenic materials can be transferred into aqueous dispersions and coated onto paper via existing technologies. With this paper coating, based on a hydrophobic cellulose derivative in combination with a structurally similar wax, thermally regenerable flower-like surface morphologies are obtained via self-assembly, where the hydrophobic cellulose polymer acts as a structural template for the co-crystallization of the wax component. Such hydrophobic structures in the low micrometer range ensure perfectly water-repellent paper surfaces with contact angles > 150° starting from coating weights of 5 g/m<superscript>2</superscript>. The dispersion can be successfully applied to a variety of commercially available paper substrates, whereby the effects of different roughness, porosity, and hydrophobicity were investigated. In this context, a certain roughness of the base paper (S<subscript>a</subscript> ~ 1.5–3 µm) was found to be beneficial for achieving the highest possible contact angles. Furthermore, the approach proved to be paper process-compatible, recyclable, and regenerable, whereby the processing temperatures allow the coating properties to be thermally generated in situ. With this work, we demonstrate how biogenic waxes are very well suited for superhydrophobic, regenerative coatings and, importantly, how they can be applied from aqueous coatings, enabling simple transfer into the paper industry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20796412
Volume :
14
Issue :
8
Database :
Complementary Index
Journal :
Coatings (2079-6412)
Publication Type :
Academic Journal
Accession number :
179349459
Full Text :
https://doi.org/10.3390/coatings14081028