Back to Search
Start Over
Identifiability implies robust, globally exponentially convergent on-line parameter estimation.
- Source :
- International Journal of Control; Sep2024, Vol. 97 Issue 9, p1967-1983, 17p
- Publication Year :
- 2024
-
Abstract
- In this paper we propose a new parameter estimator that ensures global exponential convergence of linear regression models requiring only the necessary assumption of identifiability of the regression equation, which we show is equivalent to interval excitation of the regressor vector. An extension to – separable and monotonic – nonlinear parameterisations is also given. The estimators are shown to be robust to additive measurement noise and – not necessarily slow-parameter variations. Moreover, a version of the estimator that is robust with respect to sinusoidal disturbances with unknown internal model is given. Simulation results that illustrate the performance of the estimator compared with other algorithms are given. [ABSTRACT FROM AUTHOR]
- Subjects :
- PARAMETER estimation
REGRESSION analysis
EQUATIONS
ALGORITHMS
ADDITIVES
Subjects
Details
- Language :
- English
- ISSN :
- 00207179
- Volume :
- 97
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- International Journal of Control
- Publication Type :
- Academic Journal
- Accession number :
- 179297252
- Full Text :
- https://doi.org/10.1080/00207179.2023.2246595