Back to Search Start Over

Predicting Turbidite Channel in Deep-Water Canyon Based on Grey Relational Analysis-Support Vector Machine Model: A Case Study of the Lingshui Depression in Qiongdongnan Basin, South China Sea.

Authors :
Li, Haichen
Li, Jianghai
Li, Li
Li, Zhandong
Source :
Energy Engineering; 2024, Vol. 121 Issue 9, p2435-2447, 13p
Publication Year :
2024

Abstract

The turbidite channel of South China Sea has been highly concerned. Influenced by the complex fault and the rapid phase change of lithofacies, predicting the channel through conventional seismic attributes is not accurate enough. In response to this disadvantage, this study used a method combining grey relational analysis (GRA) and support vector machine (SVM) and established a set of prediction technical procedures suitable for reservoirs with complex geological conditions. In the case study of the Huangliu Formation in Qiongdongnan Basin, South China Sea, this study first dimensionalized the conventional seismic attributes of Gas Layer Group I and then used the GRA method to obtain the main relational factors. A higher relational degree indicates a higher probability of responding to the attributes of the turbidite channel. This study then accumulated the optimized attributes with the highest relational factors to obtain a first-order accumulated sequence, which was used as the input training sample of the SVM model, thus successfully constructing the SVM turbidite channel model. Drilling results prove that the GRA-SVM method has a high drilling coincidence rate. Utilizing the core and logging data and taking full use of the advantages of seismic inversion in predicting the sand boundary of water channels, this study divides the sedimentary microfacies of the Huangliu Formation in the Lingshui 17-2 Gas Field. This comprehensive study has shown that the GRA-SVM method has high accuracy for predicting turbidite channels and can be used as a superior turbidite channel prediction method under complex geological conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01998595
Volume :
121
Issue :
9
Database :
Complementary Index
Journal :
Energy Engineering
Publication Type :
Academic Journal
Accession number :
179272031
Full Text :
https://doi.org/10.32604/ee.2024.050771