Back to Search Start Over

Automated Machine Learning in Predicting 30-Day Mortality in Patients with Non-Cholestatic Cirrhosis.

Authors :
Yu, Chenyan
Li, Yao
Yin, Minyue
Gao, Jingwen
Xi, Liting
Lin, Jiaxi
Liu, Lu
Zhang, Huixian
Wu, Airong
Xu, Chunfang
Liu, Xiaolin
Wang, Yue
Zhu, Jinzhou
Source :
Journal of Personalized Medicine; Nov2022, Vol. 12 Issue 11, p1930, 10p
Publication Year :
2022

Abstract

Objective: To evaluate the feasibility of automated machine learning (AutoML) in predicting 30-day mortality in non-cholestatic cirrhosis. Methods: A total of 932 cirrhotic patients were included from the First Affiliated Hospital of Soochow University between 2014 and 2020. Participants were divided into training and validation datasets at a ratio of 8.5:1.5. Models were developed on the H<subscript>2</subscript>O AutoML platform in the training dataset, and then were evaluated in the validation dataset by area under receiver operating characteristic curves (AUC). The best AutoML model was interpreted by SHapley Additive exPlanation (SHAP) Plot, Partial Dependence Plots (PDP), and Local Interpretable Model Agnostic Explanation (LIME). Results: The model, based on the extreme gradient boosting (XGBoost) algorithm, performed better (AUC 0.888) than the other AutoML models (logistic regression 0.673, gradient boost machine 0.886, random forest 0.866, deep learning 0.830, stacking 0.850), as well as the existing scorings (the model of end-stage liver disease [MELD] score 0.778, MELD-Na score 0.782, and albumin-bilirubin [ALBI] score 0.662). The most key variable in the XGBoost model was high-density lipoprotein cholesterol, followed by creatinine, white blood cell count, international normalized ratio, etc. Conclusion: The AutoML model based on the XGBoost algorithm presented better performance than the existing scoring systems for predicting 30-day mortality in patients with non-cholestatic cirrhosis. It shows the promise of AutoML in its future medical application. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754426
Volume :
12
Issue :
11
Database :
Complementary Index
Journal :
Journal of Personalized Medicine
Publication Type :
Academic Journal
Accession number :
179245465
Full Text :
https://doi.org/10.3390/jpm12111930