Back to Search
Start Over
On the Iwasawa main conjecture for the double product.
- Source :
- Transactions of the American Mathematical Society; Sep2024, Vol. 377 Issue 9, p6225-6250, 26p
- Publication Year :
- 2024
-
Abstract
- Let \sigma and \tau denote a pair of absolutely irreducible p-ordinary and p-distinguished Galois representations into \operatorname {GL}_2(\overline {\mathbb {F}}_p). Given two primitive forms (f,g) such that \operatorname {wt}(f)>\operatorname {wt}(g)> 1 and where \overline {\rho }_f\cong \sigma and \overline {\rho }_g\cong \tau, we show that the Iwasawa Main Conjecture for the double product \rho _f\otimes \rho _g depends only on the residual Galois representation \sigma \otimes \tau : G_{\mathbb {Q}}\rightarrow \operatorname {GL}_4(\overline {\mathbb {F}}_p). More precisely, if IMC(f\otimes g) is true for one pair (f,g) with \overline {\rho }_f \cong \sigma and \overline {\rho }_g\cong \tau and whose \mu-invariant equals zero, then it is true for every congruent pair too. [ABSTRACT FROM AUTHOR]
- Subjects :
- AUTOMORPHIC forms
LOGICAL prediction
Subjects
Details
- Language :
- English
- ISSN :
- 00029947
- Volume :
- 377
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Transactions of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 179168869
- Full Text :
- https://doi.org/10.1090/tran/9169