Back to Search
Start Over
Melt compounding of spray-dried cellulose nanofibrils/polypropylene and their application in 3D printing.
- Source :
- Cellulose; Aug2024, Vol. 31 Issue 12, p7531-7552, 22p
- Publication Year :
- 2024
-
Abstract
- Micro- and nano-scale cellulosic fillers exhibit excellent dispersion and distribution within a thermoplastic matrix during the process of melt compounding or injection molding. In this study, spray-dried cellulose nanofiber (SDCNF) powders were manufactured using a pilot-scale rotating disk atomizer spray dryer. Bleached Kraft pulp (BKP), unbleached Kraft pulp (UKP), and old corrugated cardboard pulp (OCC) fibrillated at a fines level of 90% were used as feedstock materials for spray-drying. BKP-, UKP-, and OCC- SDCNFs were compounded with polypropylene using a twin screw co-rotating extruder. Maleic anhydride grafted polypropylene (MAPP) was used as a coupling agent in the composite formulations. The tensile, flexural, and impact properties of SDCNF-filled PP composites increased at 10 wt% SDCNF loading. The presence of SDCNFs in the PP matrix resulted in faster crystallization and a 12% reduction in the degree of crystallinity of the neat PP. The coefficient of thermal expansion (CTE) of neat PP was reduced by up to 31% attributable to the presence of the SDCNFs. Application of the SDCNF-reinforced PP composites in 3D printing reduced the shrinkage rate of the printed neat PP by 39%, and the printability of the PP was significantly improved with the addition of the SDCNFs. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09690239
- Volume :
- 31
- Issue :
- 12
- Database :
- Complementary Index
- Journal :
- Cellulose
- Publication Type :
- Academic Journal
- Accession number :
- 179166294
- Full Text :
- https://doi.org/10.1007/s10570-024-06038-w