Back to Search Start Over

Persistent species relationships characterize migrating bird communities across stopover sites and seasons.

Persistent species relationships characterize migrating bird communities across stopover sites and seasons.

Authors :
DeSimone, Joely G.
DeGroote, Lucas W.
MacKenzie, Stuart A.
Owen, Jennifer C.
Patterson, Andrea J.
Cohen, Emily B.
Source :
Proceedings of the National Academy of Sciences of the United States of America; 8/20/2024, Vol. 121 Issue 34, p1-9, 39p
Publication Year :
2024

Abstract

Global migrations of diverse animal species often converge along the same routes, bringing together seasonal assemblages of animals that may compete, prey on each other, and share information or pathogens. These interspecific interactions, when energetic demands are high and the time to complete journeys is short, may influence survival, migratory success, stopover ecology, and migratory routes. Numerous accounts suggest that interspecific co-migrations are globally distributed in aerial, aquatic, and terrestrial systems, although the study of migration to date has rarely investigated species interactions among migrating animals. Here, we test the hypothesis that migrating animals are communities engaged in networks of ecological interactions. We leverage over half a million records of 50 bird species from five bird banding sites collected over 8 to 23 y to test for species associations using social network analyses. We find strong support for persistent species relationships across sites and between spring and fall migration. These relationships may be ecologically meaningful: They are often stronger among phylogenetically related species with similar foraging behaviors and nonbreeding ranges even after accounting for the nonsocial contributions to associations, including overlap in migration timing and habitat use. While interspecific interactions could result in costly competition or beneficial information exchange, we find that relationships are largely positive, suggesting limited competitive exclusion at the scale of a banding station during migratory stopovers. Our findings support an understanding of animal migrations that consist of networked communities rather than random assemblages of independently migrating species, encouraging future studies of the nature and consequences of co-migrant interactions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
121
Issue :
34
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
179162699
Full Text :
https://doi.org/10.1073/pnas.2322063121