Back to Search Start Over

Enhancing IoT network defense: advanced intrusion detection via ensemble learning techniques.

Authors :
El Hajla, Salah
Ennaji, El Mahfoud
Maleh, Yassine
Mounir, Soufyane
Source :
Indonesian Journal of Electrical Engineering & Computer Science; Sep2024, Vol. 35 Issue 3, p2010-2020, 11p
Publication Year :
2024

Abstract

The Internet of things (IoT) has evolved significantly, automating daily activities by connecting numerous devices. However, this growth has increased cybersecurity threats, compromising data integrity. To address this, intrusion detection systems (IDSs) have been developed, mainly using predefined attack patterns. With rising cyber-attacks, improving IDS effectiveness is crucial, and machine learning is a key solution. This research enhances IDS capabilities by introducing binary attack identification and multiclass attack categorization for IoT traffic, aiming to improve IDS performance. Our framework uses the 'BoT-IoT' and 'TON-IoT' datasets, which include various IoT network traffic and cyber-attack scenarios, such as DDoS and data infiltration, to train machine learning and ensemble models. Specifically, it combines three machine learning models-decision tree, resilient backpropagation (RProp) multilayer perceptron (MLP), and logistic regression-into ensemble methods like voting and stacking to improve prediction accuracy and reduce detection errors. These ensemble classifiers outperform individual models, demonstrating the benefit of diverse learning techniques. Our framework achieves high accuracy, with 99.99% for binary classification on the BoT-IoT dataset and 97.31% on the ToN-IoT dataset. For multiclass classification, it achieves 99.99% on BoT-IoT and 96.32% on ToN-IoT, significantly enhancing IDS effectiveness against IoT cybersecurity threats. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25024752
Volume :
35
Issue :
3
Database :
Complementary Index
Journal :
Indonesian Journal of Electrical Engineering & Computer Science
Publication Type :
Academic Journal
Accession number :
179115034
Full Text :
https://doi.org/10.11591/ijeecs.v35.i3.pp2010-2020