Back to Search
Start Over
Water-tank metabarrier for seismic Rayleigh wave attenuation.
- Source :
- Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences; 9/23/2024, Vol. 382 Issue 2279, p1-23, 23p
- Publication Year :
- 2024
-
Abstract
- An innovative concept of metabarrier is presented for seismic Rayleigh wave attenuation, which consists of a periodic array of cylindrical water tanks acting as resonant units above the soil surface. A pertinent theoretical framework is developed and implemented in COMSOL Multiphysics. The framework treats the dynamics of the water tank by a well-established three-dimensional linear, pressure-based model for fluid-structure interaction under earthquake excitation, accounting for the flexibility of the tank wall; furthermore, the soil is idealized as a homogeneous and isotropic medium. Floquet-Bloch dispersion analysis of the unit cell demonstrates the presence of relevant band gaps in the low-frequency range below 20 Hz and in the higher frequency range as well. The dispersion analysis is validated by comparison with the frequency-domain analysis of a soil domain with a finite array of water tanks. The band gaps are of interest to attenuate seismic Rayleigh waves and, more generally, Rayleigh waves caused by other ground vibration sources such as road or railway traffic. The water-tank resonant units are readily tunable by varying the water level, which allows changing opening frequencies/widths of the wave attenuation zones. This is a remarkable advantage over alternative seismic metamaterials that, in general, are not designed to be tunable. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1364503X
- Volume :
- 382
- Issue :
- 2279
- Database :
- Complementary Index
- Journal :
- Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 179084386
- Full Text :
- https://doi.org/10.1098/rsta.2023.0363