Back to Search Start Over

Pb(ΙΙ), Cd(ΙΙ), and Mn(ΙΙ) adsorption onto pruning-derived biochar: physicochemical characterization, modeling and application in real landfill leachate.

Authors :
Rabiee Abyaneh, Maryam
Nabi Bidhendi, Gholamreza
Daryabeigi Zand, Ali
Source :
Scientific Reports; 8/7/2024, Vol. 14 Issue 1, p1-16, 16p
Publication Year :
2024

Abstract

The aim of this study was to systemically evaluate how different pyrolysis temperatures (400, 550, and 700 °C) and particle sizes (1–2 mm and 63–75 µm) were influenced biochar evolution, made from urban pruning waste, during pyrolysis process and to establish their relationships with biochar potential for removal of lead (Pb), cadmium (Cd), and manganese (Mn) from real municipal solid waste landfill leachate. The effects of pH (2–7), contact time (30–300 min) and adsorbent dosage (0.1–5 g L<superscript>−1</superscript>) on heavy metals removal were also examined. The results showed that physicochemical properties of biochar were greatly influenced by pyrolysis temperature. Particle size, however, showed little influence on biochar characteristics (p > 0.05). The yield, volatile matter, hydrogen and oxygen contents, and surface functional groups decreased consistently with increasing pyrolysis temperature. An increase in the pH, electrical conductivity, ash, fixed carbon, and specific surface area values was also found. In biochar samples formed at high temperatures (i.e., 550 and 700 °C), Fourier transform infrared spectroscopy-FTIR studies confirmed the increase in aromaticity. Field emission scanning electron microscopy-FESEM images showed differences in the microporous structure and lower size pores at higher temperatures. Biochar pyrolyzed at 700 °C with a particle size of 63–75 µm (i.e., Lv700-63) showed the highest removal efficiency performance. Pb and Cd ions were completely removed (100%) by 0.2 g L<superscript>−1</superscript> Lv700-63 at 7.0 pH and contact times of 120 and 90 min, respectively. The maximum percentage removal of Mn was 86.20% at optimum conditions of 0.2 g L<superscript>−1</superscript> Lv700-63 dosage, 7.0 pH, and 180 min contact time. The findings suggests that the surface complexation, π-electron coordination, and cation exchange were the dominant mechanisms for the Pb, Cd, and Mn removal onto Lv700-63. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
179055094
Full Text :
https://doi.org/10.1038/s41598-024-54028-6