Back to Search Start Over

Immunoglobulin class‐switch recombination: Mechanism, regulation, and related diseases.

Authors :
Liu, Jia‐Chen
Zhang, Ke
Zhang, Xu
Guan, Fei
Zeng, Hu
Kubo, Masato
Lee, Pamela
Candotti, Fabio
James, Louisa Katherine
Camara, Niels Olsen Saraiva
Benlagha, Kamel
Lei, Jia‐Hui
Forsman, Huamei
Yang, Lu
Xiao, Wei
Liu, Zheng
Liu, Chao‐Hong
Source :
MedComm; Aug2024, Vol. 5 Issue 8, p1-22, 22p
Publication Year :
2024

Abstract

Maturation of the secondary antibody repertoire requires class‐switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high‐affinity antibodies. Following immune response or infection within the body, activation of T cell‐dependent and T cell‐independent antigens triggers the activation of activation‐induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper‐IgM syndrome, Waldenström macroglobulinemia, hyper‐IgD syndrome, selective IgA deficiency, hyper‐IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26882663
Volume :
5
Issue :
8
Database :
Complementary Index
Journal :
MedComm
Publication Type :
Academic Journal
Accession number :
179045723
Full Text :
https://doi.org/10.1002/mco2.662