Back to Search Start Over

Creep Failure Mechanism and Model of Granite under True Triaxial Loading and Unloading Conditions.

Authors :
Zhang, Xiaojun
Zhao, Jun
Jiang, Mengfei
Xue, Jiachao
He, Benguo
Source :
International Journal of Geomechanics; Oct2024, Vol. 24 Issue 10, p1-12, 12p
Publication Year :
2024

Abstract

The excavation of rock masses in deep engineering can induce stress concentration or unloading, which can significantly affect the long-term stability of engineering. To describe the creep mechanical behavior of deep hard rocks after stress adjustment, true triaxial creep tests were conducted through multistage loading and unloading. The effects of σ<subscript>1</subscript> loading, σ<subscript>2</subscript> unloading, and σ<subscript>3</subscript> unloading on creep deformation of granite were investigated. Meanwhile, the changes in creep, acoustic emission (AE) counting, and energy release rates during creep stages were evaluated. The creep failure mode and mechanism of granite were revealed. The results of the true triaxial test showed that both σ<subscript>1</subscript> loading and σ<subscript>2</subscript> unloading accelerate the creep of granite, while σ<subscript>3</subscript> unloading promotes the creep in the σ<subscript>3</subscript> direction, but the creep in σ<subscript>1</subscript> and σ<subscript>2</subscript> directions is not promoted to any significant extent. In the first three creep stages of σ<subscript>2</subscript> unloading, the strain rate of granite changes significantly. Upon approaching the stage of instability fracture, the changes in the AE count rate and energy release rate are more pronounced compared to the strain rate. By analyzing creep curves, a comprehensive three-dimensional nonlinear viscoelastic–plastic damage creep model specifically for granite was established. The consistency between the experimental data and the predicted result obtained from the model shows that the three-dimensional nonlinear viscoelastic–plastic damage creep model can demonstrate the creep behavior of granite under true triaxial σ<subscript>1</subscript> loading and σ<subscript>2</subscript> and σ<subscript>3</subscript> unloading conditions, thereby serving as a valuable reference for assessing the long-term stability of deep rock masses. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15323641
Volume :
24
Issue :
10
Database :
Complementary Index
Journal :
International Journal of Geomechanics
Publication Type :
Academic Journal
Accession number :
179022741
Full Text :
https://doi.org/10.1061/IJGNAI.GMENG-9622