Back to Search Start Over

Noise signature identification using mobile phones for indoor localization.

Authors :
King, Sayde
Pinder, Samann
Fernandez-Lanvin, Daniel
González García, Cristian
De Andrés, Javier
Labrador, Miguel
Source :
Multimedia Tools & Applications; Jul2024, Vol. 83 Issue 24, p64591-64613, 23p
Publication Year :
2024

Abstract

Indoor localization is still nowadays a challenge with room to improve. Even though there are many different approaches that have evidenced as effective, most of them require specific hardware or infrastructure deployed along the building that can be discarded in many potential scenarios. Others that do not require such on-site infrastructure, like inertial navigation-based systems, entail certain accuracy problems due to the accumulation of errors. However, this error-accumulation can be mitigated using beacons that support the recalibration of the system. The more frequently beacons are detected, the smaller will be the accumulated error. In this work, we evaluate the use of the noise signature of the rooms of a building to pinpoint the current location of a low-cost Android device. Despite this strategy is not a complete indoor localization system (two rooms could share the same signature), it allows us to generate beacons automatically. The noise recorded by the device is preprocessed performing audio filtering, audio frame segmentation, and feature extraction. We evaluated binary (determining if the ambient sound recording belonged to a specific room) and multi-class (identifying which room an ambient noise recording belonged to by comparing it amongst the remaining 18 rooms from the original 19 rooms sampled) classification methods. Our results indicate that the two Stacking techniques and K-Nearest Neighbor (KNN) machine learning classifier are the most successful methods in binary classification with an average accuracy of 99.19%, 99,08%, and 99.04%. In multi-class classification the average accuracy for KNN is 90.77%, and 90.52% and 90.15% for both Voting techniques. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13807501
Volume :
83
Issue :
24
Database :
Complementary Index
Journal :
Multimedia Tools & Applications
Publication Type :
Academic Journal
Accession number :
178996638
Full Text :
https://doi.org/10.1007/s11042-023-17885-3