Back to Search Start Over

Re-examination of the intumescence mechanism of ammonium polyphosphate/pentaerythritol/zeolite 4A fire-retarded formulation using advanced spectroscopic techniques.

Authors :
Caron, Matthieu
Ben Tayeb, Karima
Bourbigot, Serge
Fontaine, Gaëlle
Source :
Journal of Fire Sciences; Sep2024, Vol. 42 Issue 5, p405-438, 34p
Publication Year :
2024

Abstract

The mixture of ammonium polyphosphate and pentaerythritol is a very efficient intumescent system suitable for polyolefins, especially polypropylene. In this article, the intumescence mechanism of this intumescent system with and without zeolite 4A used as a synergy agent is revisited. The intumescent system was investigated in depth using continuous-wave electron paramagnetic resonance spectroscopy, solid-state nuclear magnetic resonance, and the advanced technique, namely hyperfine sublevel correlation pulsed electron paramagnetic resonance. It was observed that the char generated between 250°C and 350°C is made of polycyclic heterocyclic radicals with nitrogen atoms and that free radicals are mainly generated at these temperatures with a spin concentration relatively stable at least up to 500°C. Moreover, the presence of hydrogen, carbon, nitrogen, and phosphorus was clearly evidenced in the chemical environment of free electrons at 350°C (hyperfine sublevel correlation pulsed electron paramagnetic resonance). Besides, it was also evidenced that 4A totally collapses below 250°C. Contrary to previous works suggesting the presence of aluminosilicophosphate complexes, this work demonstrated that distinct alumino- and silicophosphate complexes are generated and protected the residue at high temperatures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07349041
Volume :
42
Issue :
5
Database :
Complementary Index
Journal :
Journal of Fire Sciences
Publication Type :
Academic Journal
Accession number :
178994330
Full Text :
https://doi.org/10.1177/07349041241245697