Back to Search Start Over

Antibiotic-resistant characteristics and horizontal gene transfer ability analysis of extended-spectrum ß-lactamase-producing Escherichia coli isolated from giant pandas.

Authors :
Haifeng Liu
Siping Fan
Xiaoli Zhang
Yu Yuan
Wenhao Zhong
Liqin Wang
Chengdong Wang
Ziyao Zhou
Shaqiu Zhang
Yi Geng
Guangneng Peng
Ya Wang
Kun Zhang
Qigui Yan
Yan Luo
Keyun Shi
Zhijun Zhong
Source :
Frontiers in Veterinary Science; 2024, p1-9, 9p
Publication Year :
2024

Abstract

Extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) is regarded as one of the most important priority pathogens within the One Health interface. However, few studies have investigated the occurrence of ESBL-EC in giant pandas, along with their antibiotic-resistant characteristics and horizontal gene transfer abilities. In this study, we successfully identified 12 ESBL-EC strains (8.33%, 12/144) out of 144 E. coli strains which isolated from giant pandas. We further detected antibiotic resistance genes (ARGs), virulence-associated genes (VAGs) and mobile genetic elements (MGEs) among the 12 ESBL-EC strains, and the results showed that 13 ARGs and 11 VAGs were detected, of which blaCTX-M (100.00%, 12/12, with 5 variants observed) and papA (83.33%, 10/12) were the most prevalent, respectively. And ISEcp1 (66.67%, 8/12) and IS26 (66.67%, 8/12) were the predominant MGEs. Furthermore, horizontal gene transfer ability analysis of the 12 ESBL-EC showed that all blaCTX-M genes could be transferred by conjugative plasmids, indicating high horizontal gene transfer ability. In addition, ARGs of rmtB and sul2, VAGs of papA, fimC and ompT, MGEs of ISEcp1 and IS26 were all found to be co-transferred with blaCTX-M. Phylogenetic analysis clustered these ESBL-EC strains into group B2 (75.00%, 9/12), D (16.67%, 2/12), and B1 (8.33%, 1/12), and 10 sequence types (STs) were identified among 12 ESBL-EC (including ST48, ST127, ST206, ST354, ST648, ST1706, and four new STs). Our present study showed that ESBL-EC strains from captive giant pandas are reservoirs of ARGs, VAGs and MGEs that can co-transfer with blaCTX-M via plasmids. Transmissible ESBL-EC strains with high diversity of resistance and virulence elements are a potential threat to humans, animals and surrounding environment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22971769
Database :
Complementary Index
Journal :
Frontiers in Veterinary Science
Publication Type :
Academic Journal
Accession number :
178981134
Full Text :
https://doi.org/10.3389/fvets.2024.1394814