Back to Search Start Over

Inferring building height from footprint morphology data.

Authors :
Stipek, Clinton
Hauser, Taylor
Adams, Daniel
Epting, Justin
Brelsford, Christa
Moehl, Jessica
Dias, Philipe
Piburn, Jesse
Stewart, Robert
Source :
Scientific Reports; 8/12/2024, Vol. 14 Issue 1, p1-14, 14p
Publication Year :
2024

Abstract

As cities continue to grow globally, characterizing the built environment is essential to understanding human populations, projecting energy usage, monitoring urban heat island impacts, preventing environmental degradation, and planning for urban development. Buildings are a key component of the built environment and there is currently a lack of data on building height at the global level. Current methodologies for developing building height models that utilize remote sensing are limited in scale due to the high cost of data acquisition. Other approaches that leverage 2D features are restricted based on the volume of ancillary data necessary to infer height. Here, we find, through a series of experiments covering 74.55 million buildings from the United States, France, and Germany, it is possible, with 95% accuracy, to infer building height within 3 m of the true height using footprint morphology data. Our results show that leveraging individual building footprints can lead to accurate building height predictions while not requiring ancillary data, thus making this method applicable wherever building footprints are available. The finding that it is possible to infer building height from footprint data alone provides researchers a new method to leverage in relation to various applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
178969579
Full Text :
https://doi.org/10.1038/s41598-024-66467-2