Back to Search Start Over

Deep learning for accelerated and robust MRI reconstruction.

Authors :
Heckel, Reinhard
Jacob, Mathews
Chaudhari, Akshay
Perlman, Or
Shimron, Efrat
Source :
MAGMA: Magnetic Resonance Materials in Physics, Biology & Medicine; Jul2024, Vol. 37 Issue 3, p335-368, 34p
Publication Year :
2024

Abstract

Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09685243
Volume :
37
Issue :
3
Database :
Complementary Index
Journal :
MAGMA: Magnetic Resonance Materials in Physics, Biology & Medicine
Publication Type :
Academic Journal
Accession number :
178969498
Full Text :
https://doi.org/10.1007/s10334-024-01173-8