Back to Search Start Over

PANACEA: a neural model ensemble for cyber-threat detection.

Authors :
AL-Essa, Malik
Andresini, Giuseppina
Appice, Annalisa
Malerba, Donato
Source :
Machine Learning; Aug2024, Vol. 113 Issue 8, p5379-5422, 44p
Publication Year :
2024

Abstract

Ensemble learning is a strategy commonly used to fuse different base models by creating a model ensemble that is expected more accurate on unseen data than the base models. This study describes a new cyber-threat detection method, called PANACEA, that uses ensemble learning coupled with adversarial training in deep learning, in order to gain accuracy with neural models trained in cybersecurity problems. The selection of the base models is one of the main challenges to handle, in order to train accurate ensembles. This study describes a model ensemble pruning approach based on eXplainable AI (XAI) to increase the ensemble diversity and gain accuracy in ensemble classification. We base on the idea that being able to identify base models that give relevance to different input feature sub-spaces may help in improving the accuracy of an ensemble trained to recognise different signatures of different cyber-attack patterns. To this purpose, we use a global XAI technique to measure the ensemble model diversity with respect to the effect of the input features on the accuracy of the base neural models combined in the ensemble. Experiments carried out on four benchmark cybersecurity datasets (three network intrusion detection datasets and one malware detection dataset) show the beneficial effects of the proposed combination of adversarial training, ensemble learning and XAI on the accuracy of multi-class classifications of cyber-data achieved by the neural model ensemble. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08856125
Volume :
113
Issue :
8
Database :
Complementary Index
Journal :
Machine Learning
Publication Type :
Academic Journal
Accession number :
178953583
Full Text :
https://doi.org/10.1007/s10994-023-06470-2