Back to Search Start Over

A Discrete Resistance Network Based on a Multiresolution Grid for 3D Ground-Return Current Forward Modeling.

Authors :
Duan, Lijun
Feng, Xiao
Li, Ruiheng
Li, Tianyang
Di, Yi
Hao, Tian
Source :
Mathematics (2227-7390); Aug2024, Vol. 12 Issue 15, p2392, 15p
Publication Year :
2024

Abstract

While the high-voltage direct current (HVDC) transmission system is in monopolar operation, it produces thousands of amperes of ground-return currents (GRCs). Accurate computation of the GRCs is essential for assessing safety implications for nearby industrial infrastructure. Current three-dimensional forward models of GRCs are typically constructed based on discrete differential equations, and their solving efficiency is constrained by the increased degrees of freedom resulting from the fine discretization grids in high-conductivity conductors and ground points. To address this issue, we present a new resistor network (RN) forward solver based on a multi-resolution grid approach. This solver utilizes an RN to avoid the massive degrees of freedom resulting from fine discretization of high-voltage conductors and enhances grid discretization efficiency near the surface grounding system through multi-resolution grids. We demonstrate, through multiple three-dimensional geoelectrical model cases, that the proposed method reduces the forward modeling misfit to 1% and possesses only 3‰ of the required discrete elements compared to traditional approaches. Furthermore, practical HVDC grid model analyses indicate the successful application of the proposed method for GRC analysis in complex geoelectric conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
12
Issue :
15
Database :
Complementary Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
178949012
Full Text :
https://doi.org/10.3390/math12152392