Back to Search Start Over

Computation Offloading Strategy for Detection Task in Railway IoT with Integrated Sensing, Storage, and Computing.

Authors :
Guo, Qichang
Xu, Zhanyue
Yuan, Jiabin
Wei, Yifei
Source :
Electronics (2079-9292); Aug2024, Vol. 13 Issue 15, p2982, 18p
Publication Year :
2024

Abstract

Online detection devices, powered by artificial intelligence technologies, enable the comprehensive and continuous detection of high-speed railways (HSRs). However, the computation-intensive and latency-sensitive nature of these detection tasks often exceeds local processing capabilities. Mobile Edge Computing (MEC) emerges as a key solution in the railway Internet of Things (IoT) scenario to address these challenges. Nevertheless, the rapidly varying channel conditions in HSR scenarios pose significant challenges for efficient resource allocation. In this paper, a computation offloading system model for detection tasks in the railway IoT scenario is proposed. This system includes direct and relay transmission models, incorporating Non-Orthogonal Multiple Access (NOMA) technology. This paper focuses on the offloading strategy for subcarrier assignment, mode selection, relay power allocation, and computing resource management within this system to minimize the average delay ratio (the ratio of delay to the maximum tolerable delay). However, this optimization problem is a complex Mixed-Integer Non-Linear Programming (MINLP) problem. To address this, we present a low-complexity subcarrier allocation algorithm to reduce the dimensionality of decision-making actions. Furthermore, we propose an improved Deep Deterministic Policy Gradient (DDPG) algorithm that represents discrete variables using selection probabilities to handle the hybrid action space problem. Our results indicate that the proposed system model adapts well to the offloading issues of detection tasks in HSR scenarios, and the improved DDPG algorithm efficiently identifies optimal computation offloading strategies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
15
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
178947644
Full Text :
https://doi.org/10.3390/electronics13152982