Back to Search
Start Over
Prompt Engineering in Healthcare.
- Source :
- Electronics (2079-9292); Aug2024, Vol. 13 Issue 15, p2961, 26p
- Publication Year :
- 2024
-
Abstract
- The rapid advancements in artificial intelligence, particularly generative AI and large language models, have unlocked new possibilities for revolutionizing healthcare delivery. However, harnessing the full potential of these technologies requires effective prompt engineering—designing and optimizing input prompts to guide AI systems toward generating clinically relevant and accurate outputs. Despite the importance of prompt engineering, medical education has yet to fully incorporate comprehensive training on this critical skill, leading to a knowledge gap among medical clinicians. This article addresses this educational gap by providing an overview of generative AI prompt engineering, its potential applications in primary care medicine, and best practices for its effective implementation. The role of well-crafted prompts in eliciting accurate, relevant, and valuable responses from AI models is discussed, emphasizing the need for prompts grounded in medical knowledge and aligned with evidence-based guidelines. The article explores various applications of prompt engineering in primary care, including enhancing patient–provider communication, streamlining clinical documentation, supporting medical education, and facilitating personalized care and shared decision-making. Incorporating domain-specific knowledge, engaging in iterative refinement and validation of prompts, and addressing ethical considerations and potential biases are highlighted. Embracing prompt engineering as a core competency in medical education will be crucial for successfully adopting and implementing AI technologies in primary care, ultimately leading to improved patient outcomes and enhanced healthcare delivery. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20799292
- Volume :
- 13
- Issue :
- 15
- Database :
- Complementary Index
- Journal :
- Electronics (2079-9292)
- Publication Type :
- Academic Journal
- Accession number :
- 178947623
- Full Text :
- https://doi.org/10.3390/electronics13152961