Back to Search Start Over

Thickness‐ and Wavelength‐Dependent Nonlinear Optical Absorption in 2D Layered MXene Films.

Authors :
Jin, Di
Liu, Wenbo
Jia, Linnan
Zhang, Yuning
Hu, Junkai
El Dirani, Houssein
Kerdiles, Sébastien
Sciancalepore, Corrado
Demongodin, Pierre
Grillet, Christian
Monat, Christelle
Huang, Duan
Wu, Jiayang
Jia, Baohua
Moss, David J.
Source :
Small Science; Aug2024, Vol. 4 Issue 8, p1-15, 15p
Publication Year :
2024

Abstract

As a rapidly expanding family of 2D materials, MXenes have recently gained considerable attention. Herein, by developing a coating method that enables transfer‐free and layer‐by‐layer film coating, the nonlinear optical absorption (NOA) of Ti3C2Tx MXene films is investigated. Using the Z‐scan technique, the NOA of the MXene films is characterized at ≈800 nm. The results show that there is a strong and layer‐dependent NOA behavior, transitioning from reverse saturable absorption (RSA) to saturable absorption (SA) as the layer number increases from 5 to 30. Notably, the nonlinear absorption coefficient β changes significantly from ≈7.13 × 102 cm GW−1 to ≈−2.69 × 102 cm GW−1 within this range. The power‐dependent NOA of the MXene films is also characterized, and a decreasing trend in β is observed for increasing laser intensity. Finally, the NOA of 2D MXene films at ≈1550 nm is characterized by integrating them onto silicon nitride waveguides, where an SA behavior is observed for the films including 5 and 10 layers of MXene, in contrast to the RSA observed at ≈800 nm. These results reveal intriguing nonlinear optical properties of 2D MXene films, highlighting their versatility and potential for implementing high‐performance nonlinear photonic devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
Volume :
4
Issue :
8
Database :
Complementary Index
Journal :
Small Science
Publication Type :
Academic Journal
Accession number :
178946403
Full Text :
https://doi.org/10.1002/smsc.202400179