Back to Search Start Over

Boron neutron capture therapy delays the decline in neurological function in a mouse model of metastatic spinal tumors.

Authors :
Fujikawa, Yoshiki
Kawabata, Shinji
Tsujino, Kohei
Yamada, Hironori
Kashiwagi, Hideki
Yagi, Ryokichi
Hiramatsu, Ryo
Nonoguchi, Naosuke
Takami, Toshihiro
Sasaki, Akinori
Hu, Naonori
Takata, Takushi
Tanaka, Hiroki
Suzuki, Minoru
Wanibuchi, Masahiko
Source :
Cancer Science; Aug2024, Vol. 115 Issue 8, p2774-2785, 12p
Publication Year :
2024

Abstract

Metastatic spinal tumors are increasingly prevalent due to advancements in cancer treatment, leading to prolonged survival rates. This rising prevalence highlights the need for developing more effective therapeutic approaches to address this malignancy. Boron neutron capture therapy (BNCT) offers a promising solution by delivering targeted doses to tumors while minimizing damage to normal tissue. In this study, we evaluated the efficacy and safety of BNCT as a potential therapeutic option for spine metastases in mouse models induced by A549 human lung adenocarcinoma cells. The animal models were randomly allocated into three groups: untreated (n = 10), neutron irradiation only (n = 9), and BNCT (n = 10). Each mouse was administered 4‐borono‐L‐phenylalanine (250 mg/kg) intravenously, followed by measurement of boron concentrations 2.5 h later. Overall survival, neurological function of the hindlimb, and any adverse events were assessed post irradiation. The tumor‐to‐normal spinal cord and blood boron concentration ratios were 3.6 and 2.9, respectively, with no significant difference observed between the normal and compressed spinal cord tissues. The BNCT group exhibited significantly prolonged survival rates compared with the other groups (vs. untreated, p = 0.0015; vs. neutron‐only, p = 0.0104, log‐rank test). Furthermore, the BNCT group demonstrated preserved neurological function relative to the other groups (vs. untreated, p = 0.0004; vs. neutron‐only, p = 0.0051, multivariate analysis of variance). No adverse events were observed post irradiation. These findings indicate that BNCT holds promise as a novel treatment modality for metastatic spinal tumors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13479032
Volume :
115
Issue :
8
Database :
Complementary Index
Journal :
Cancer Science
Publication Type :
Academic Journal
Accession number :
178910041
Full Text :
https://doi.org/10.1111/cas.16245