Back to Search Start Over

Dynamic RIS partitioning in NOMA systems using deep reinforcement learning.

Authors :
Gevez, Yarkin
Tek, Yusuf Islam
Basar, Ertugrul
Source :
Frontiers in Antennas & Propagation; 2024, p1-18, 18p
Publication Year :
2024

Abstract

The rapid evolution of wireless communication technologies necessitates innovative solutions to meet the increasing performance requirements of future networks, particularly in terms of spectral efficiency, energy efficiency, and computational efficiency. Reconfigurable Intelligent Surfaces (RIS) and NonOrthogonal Multiple Access (NOMA) are emerging as promising technologies to enhance wireless communication systems. This paper explores the dynamic partitioning of RIS elements in NOMA systems using Deep Reinforcement Learning (DRL) to optimize resource allocation and overall system performance. We propose a novel DRL-based framework that dynamically adjusts the partitioning of RIS elements to maximize the achievable sum rate and ensure fair resource distribution among users. Our architecture leverages the flexibility of RIS to create an intelligent radio environment, while NOMA enhances spectral efficiency. The DRL model is trained online, adapting to real-time changes in the communication environment. Empirical results demonstrate that our approach closely approximates the performance of the optimal iterative algorithm (exhaustive search) while reducing computational time by up to 90 percent. Furthermore, our method eliminates the need for an offline training phase, providing a significant advantage in dynamic environments by removing the requirement for retraining with every environmental change. These findings highlight the potential of DRL-based dynamic partitioning as a viable solution for optimizing RIS-aided NOMA systems in future wireless networks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
28134680
Database :
Complementary Index
Journal :
Frontiers in Antennas & Propagation
Publication Type :
Academic Journal
Accession number :
178893031
Full Text :
https://doi.org/10.3389/fanpr.2024.1418412