Back to Search Start Over

Monodisperse Manganese‐Vanadium‐Oxo Clusters with Extraordinary Lithium Storage.

Authors :
Tang, Wensi
Qiu, Tianyu
Hu, Zhiyuan
Li, Yingqi
Yao, Ruiqi
Wang, Yonghui
Lang, Xingyou
Tan, Huaqiao
Li, Yangguang
Jiang, Qing
Source :
Advanced Science; 8/7/2024, Vol. 11 Issue 29, p1-8, 8p
Publication Year :
2024

Abstract

Although possessing well‐defined nanostructures and excellent multi‐electron redox properties, polyoxometalate clusters have poor intrinsic electrical conductivity and are prone to aggregation due to large surface energy, which makes them difficult to be fully utilized when applying as electrode materials for lithium‐ion batteries. In this paper, monodisperse K7MnV13O38 (MnV13) clusters are achieved by rationally utilizing nano‐sized high conductive carbon dots (CDs) as stabilizers. Benefiting from the fully exposed redox sites of MnV13 clusters (high utilization rate) and sufficient interfaces with carbon dots (extra interfacial energy storage), the optimized MnV13/10CDs anode delivers a high discharge capacity up to 1348 mAh g−1 at a current density of 0.1 A g−1 and exhibits superb rate/cycling capabilities. Density functional theory (DFT) calculations verify that ionic archway channels are formed between MnV13 and CDs, eliminating the bandgap and greatly improving the electron/ion conductivity of MnV13 and CDs. This paper paves a brand‐new way for synthesis of monodisperse clusters and maximization of extra interfacial energy storage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
29
Database :
Complementary Index
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
178882941
Full Text :
https://doi.org/10.1002/advs.202402616